
A Model of Superposed States

Justus Robertson
Department of Computer Science
North Carolina State University

Raleigh, NC 27695
jjrobert@ncsu.edu

R. Michael Young
School of Computing

The University of Utah
Salt Lake City, UT 84112

young@cs.utah.edu

Abstract

Interactive narratives (IN) are stories that branch and
change based on the actions of a participant. A class
of automated systems generate INs where all story
branches conform to a set of constraints predefined by
an author. Participants in these systems may create in-
valid branches by navigating the story world outside
the bounds of an author’s constraints. We approach this
problem from an adversarial game perspective, where
the IN system’s goal is to prevent the player from cre-
ating invalid branches. From this perspective, one way
an IN system can take action is to transition the game
world between alternate states that are consistent with
the player’s observations during gameplay. In this pa-
per we present a method of modelling and updating sets
of world states consistent with player knowledge as a
single superposed data structure. We discuss how this
data structure can be used in an IN framework to max-
imize the probability that author constraints are main-
tained during gameplay.

Introduction
Interactive narratives are participatory stories whose events
change based on actions a player takes during gameplay.
A popular example of interactive narratives are the Choose
Your Own Adventure (Packard 1979) series of game books.
One open problem in interactive narrative design is the com-
binatorial explosion of possible stories based on the num-
ber of unique choices a player is able to make (Bruckman
1990). Interactive narrative agents, called experience man-
agers, can mitigate this combinatorial explosion by automat-
ing the generation and control of character behaviors and
plot structures. One type of experience management sys-
tem is called a strong story agent (Riedl and Bulitko 2013).
Strong story agents control story characters by building plots
with interesting narrative properties. Interesting narrative
properties can be specified as a set of constraints, called au-
thorial constraints, on the possible plots generated by the
system (Riedl, Thue, and Bulitko 2011).

One open problem in strong story systems is called
the boundary problem (Magerko 2007) or narrative para-
dox (Louchart and Aylett 2003). This problem arises when

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the player takes a sequence of actions that navigates the story
world into a state such that no plot exists that satisfies au-
thorial constraints. There are several ways for a strong story
system to deal with this problem, including action interven-
tion, constraint exchange, and Schrödinger accommodation.

Intervention is a method of exchanging the effects of
a player action that navigates the story world outside the
bounds of authorial constraints with a second set that do
not contradict the plot (Riedl, Saretto, and Young 2003).
One potential problem with intervention is that repeated uses
may decrease the system’s invisibility (Roberts and Isbell
2008) by making the user aware there is a system manip-
ulating the story world. A second method allows domain au-
thors to specify multiple sets of constraints on the stories
told by the system. The experience manager can continue to
generate plots as long as they match at least one set of con-
straints (Riedl et al. 2008). One drawback of this method is
it requires a larger authorial burden on the system designer
to specify multiple sets of interesting constraints.

The final method, Schrödinger accommodation, finds new
plots that match authorial constraints by searching through a
set of possible histories that are consistent with the player’s
experience (Robertson and Young 2014a). One drawback
of this approach is that it waits until the user tries to nav-
igate the world outside the bounds of authorial constraints
to act. In this paper, we address this drawback by providing
a framework to actively choose between superposed states
whenever a player observes something new. We do this by
framing strong story experience managers as adversarial
game players to show that some states are more desirable
than others based on the percentage of their child branches
that are consistent with authorial constraints. We then pro-
vide a model capable of representing, updating, and splitting
superposed state information. This model can be used to ac-
tively choose states that maximize the chance of authorial
constraints holding whenever the user makes an observation
that collapses the superposition.

Experience Management Framework
This paper builds off of work on automated strong story
interactive narrative systems. A common approach to re-
alizing these systems is AI planning (Young et al. 2013).
Our work is implemented in the framework of a turn-
based, state-centric experience management framework sim-

Problem
Initial State

Snake at Elevator-Room

Snake has PP7

Snake has C4

Snake has C4-Detonator

Boss at Gear-Room

Boss has Laser-Rifle

Boss has Trip-Wire

Boss has Phone

Gears at Gear-Room

Terminal1 at Gear-Room

Terminal2 at Left-Walkway

Terminal3 at Right-Walkway

Terminal4 at Platform

Elevator-Room connected Gear-Room

Gear-Room connected Left-Walkway

Gear-Room connected Right-Walkway

Left-Walkway connected Platform

Right-Walkway connected Platform

Goal State

Snake is alive

Boss is not alive

Boss is at Platform

Phone is linked

Snake disabled a trap

Gears are destroyed

Domain

place(?actr,?bmb,?thng,?loc)

Precons: ?actr at ?loc

?actr is alive

?actr has ?bmb

?thng at ?loc

Effects: ?actr not have ?bmb

?bmb placed on ?thng

detonate(?actr,?dtn,?bmb,?thng)

Precons: ?actr has ?dtn

?actr is alive

?bmb placed on ?thng

Effects: ?thng is destroyed

?bmb not on ?thng

use(?user,?computer,?loc)

Precons: ?user at ?loc

?user is alive

?computer at ?loc

Effects: ?computer is used

make(?maker,?gun,?wire)

Precons: ?maker has ?gun

?maker has ?wire

Effects: ?maker has Trap

?maker not have ?wire

?maker not have ?gun

set(?setter,?trap,?loc)

Precons: ?user at ?loc

?user has ?trap

?user is alive

Effects: ?trap is at ?loc

move(?mover,?loc,?oldloc)

Precons: ?mover at ?oldloc

?mover is alive

?oldloc connected ?loc

Effects: ?mover not at ?oldloc

?mover at ?loc

shoot(?shooter,?shot,?gun,?loc)

Precons: ?shooter at ?loc

?shooter is alive

?shooter has ?gun

?shot at ?loc

Effect: ?shot is not alive

disable(?disabler,?trap,?loc)

Precons: ?disabler at ?loc

?disabler is alive

?trap at ?loc

Effects: ?trap not at ?loc

?disabler disabled ?trap

link(?user,?phone,?cmptr,?loc)

Precons: ?user at ?loc

?user is alive

?user has ?phone

?cmptr is used

?cmptr at ?loc

Effects: ?phone is linked

Figure 1: A simplified PDDL problem and domain that represents the Spy world.

(a) The Boss (b) Snake (c) PC Terminal (d) Activated PC (e) Phone (f) Linked Phone (g) Gears (h) Trap

Figure 2: A key of PDDL objects pictured in Figures 3, 4, and 6.

ilar to the GME system (Robertson and Young 2014b;
2015). The framework utilizes the Planning Domain Defi-
nition Language (PDDL) (McDermott et al. 1998) to model
world states and dynamics. PDDL models are comprised of
an initial state, a goal state, and a set of action operators that
characters use to transform the story world. Figure 1 shows
an example PDDL model of the Spy domain.

PDDL representations consist of a problem and a do-
main. A PDDL problem containts an initial state that spec-
ifies what things are true when the world begins. A PDDL
problem also contains a goal state that specifies what things
should be true when the story ends. A PDDL domain speci-
fies action operators that can be used by characters to update
states. Action operators have a list of preconditions, which
are terms that must be true for the action to be executed.
Action operators also have a list of effects, which are terms
that become true after the action is executed. Finally, action
operators have a list of variables. In Figure 1, variables are
denoted with a leading ’?’. For example, ?mover in the move
action is a variable because its first character is a ’?’.

Variables can be bound to certain objects, which are
things that exist in the world. In Figure 1, objects are spec-
ified with a capitalized first letter. For example, Snake is an
object because its first character is a capital ’S’. When all
the variables in an action operator are bound to objects, it is
called fully ground. Fully ground operators are actions that
can be performed by characters in the story world. For exam-
ple, when the action move(?mover,?loc,?oldloc) is bound to
the objects Snake,Gear-Room,Elevator-Room it represents

Platform

Left Walk Right Walk

Gear

Elevator

Figure 3: A diagram of the initial configuration of the Spy world.

the character Snake moving from a place called the Eleva-
tor Room to a place called the Gear Room. This action can
be performed in any world state where the action’s bound
preconditions are satisfied: where Snake is located at the El-
evator Room, Snake is alive, and the Elevator Room is con-
nected to the Gear Room. The new state created by applying
this action, called the successor state, will have Snake lo-
cated at the Gear Room instead of the Elevator Room.

The Spy game, modelled by the PDDL domain and prob-
lem in Figure 1, is an example world where the player,
as a spy named Snake, must foil the final attempt of
the computer-controlled antagonist, the Boss, to bring a
weaponized satellite online. The confrontation takes place
on a sattellite dish antenna cradle with five discrete loca-

Story Available

Platform

Left Walk Right Walk

Gear

Elevator

No Story Available No Story Available

Snake move to Platform Snake disable TrapSnake shoot Boss with PP7

(a) A state with a 1:2 ratio of good branches to bad branches.

Story Available

Platform

Left Walk Right Walk

Gear

Elevator

No Story Available

Snake disable TrapSnake move to Platform

Left Walk Right Walk

Gear

Elevator

Platform

(b) A state with a 1:1 ratio of good branches to bad branches.

Figure 4: Two states and their outgoing player actions in the Spy domain. Assuming the player makes uniformly random decisions, the state
in Figure 5a has a 1/3 chance that authorial constraints hold and Figure 5b has a 1/2 chance.

tions where the Snake and Boss can interact: the Elevator
Room, Gear Room, Left and Right Walkways, and the Plat-
form. The locations are connected by doors that can only be
traversed in one direction. The layout is pictured in Figure 3,
where locations are labeled rectangles and doors are arrows.
The doors can only be traversed in the direction arrows are
facing. Snake begins the game in the Elevator Room. Her
job is to disable the satellite dish’s alignment mechanism in
the Gear Room and eliminate the Boss. The Boss is trying
to send instructions from his phone to the satellite by linking
the phone to one of four computer terminals on the cradle.
The domain author wants the Boss to build and set a trap
to be disabled by the player before a final confrontation be-
tween the two on the platform. These authorial constraints
are coded as conditions in the PDDL goal state.

Snake starts off in the elevator room and the Boss begins
in the gear room. Snake has a pistol (PP7) an explosive (C4)
and a detonator for the explosive. The Boss has a laser ri-
fle and a trip-wire for building a trap, and a phone. There is
a computer terminal on the Platform, Left and Right walk-
ways, and in the Gear Room. This initial world configuration
is shown in Figure 3. The game progresses by alternating
between allowing the Boss and Snake to take an action that
updates state information. The Boss is controlled by plots
generated by the system’s planner. Snake is controlled by a
player. The game continues until a goal state is reached or
the author’s constraints are broken.

Experience Management as Adversarial Game
One way to view experience management is as an ad-
versariable game played by the experience manager. The
experience manager wins if it tells an interesting story
and loses if it tells an uninteresting story. Viewing experi-
ence management from this adversarial game perspective
has been around since the Oz Project (Weyhrauch 1997;

Mateas 2001). This perspective is useful because the win
and loss outcomes can quantify how succesful an algorithm
is at telling interesting interactive stories. It also serves as
a baseline that allows us to compare the output of different
experience management algorithms.

Interesting story qualities like intentional character ac-
tions (Riedl and Young 2010; Haslum 2012), character be-
liefs (Teutenberg and Porteous 2015), and conflict (Ware and
Young 2014) can be modeled with PDDL, reasoned about by
planners, and exist in solution plans. If an author can com-
pile all the narrative qualities they care about into a PDDL
domain and problem, the experience management frame-
work outlined in the last section can be viewed as an adver-
sarial game player. The experience manager wins the game
by telling an interesting story if a goal state is reached. It
loses the game by telling an uninteresting story if all goal
states become inaccessible.

State Utility
Under the adversarial game perspective, not all states part
of valid plots are equally desirable. The utility of any state
can be measured with the probability that the world will
reach a goal configuration. Unfortunately, this probability
is hard to determine for several reasons. One difference be-
tween experience management and a more traditional game
like Chess is that in most games the objectives and outcomes
of both players are explicitly defined and often symmetric.
In an interactive narrative domain we don’t always know
the player’s payoffs or how they will act. With a model
of choice preference (Yu and Riedl 2013), goal recogni-
tion (Cardona-Rivera and Young 2015), and/or role assign-
ment (Domınguez et al. 2016) we could favor player choices
predicted by the player model with higher probability. For
now, we assume that the player will choose uniformly at ran-
dom from the available choice options.

Boss moves from Gear Room to Right Walkway

Snake moves from Elevator Room to Gear Room

Boss uses Terminal at Right Walkway

Snake places C4 on Gears at Gear Room

Boss links Phone to Terminal at Right Walkway

Snake detonates C4 with Detonator

Boss makes Trap with Laser Rifle and Trip Wire

(a)

Boss moves from Gear Room to Right Walkway

Snake moves from Elevator Room to Gear Room

Boss makes Trap with Laser Rifle and Trip Wire

Snake places C4 on Gears at Gear Room

Boss sets Trap at Right Walkway

Snake detonates C4 with Detonator

Boss moves from Right Walkway to Platform

(b)

Figure 5: Two perceptually equivalent action trajectories in the Spy domain. The player observes any action performed in the room where
they are located. Actions unobserved by the player have a dotted border. From the player’s perspective, either of these sequences of events
could have taken place given player actions of moving to the Gear Room, placing C4 on the gears, and detonating the C4.

Under this assumption, a state’s utility can be calculated
by fully expanding all of its outgoing edges and counting
the ratio of wins to losses. An example is given in Figure 4.
Both states are part of possible story sequences of compara-
ble length and both are within three actions of a goal con-
figuration. In Figure 4a, the Boss and Snake are at the Right
Walkway. The Boss has crafted and laid a trap for Snake,
has activated the computer terminal, and linked his phone.
In Figure 4b the Boss is at the Platform and Snake is at
the Right Walkway. The Boss has laid a trap for Snake at
the Right Walkway, but instead of activating and linking his
phone at the Right Walkway, has moved to the Platform and
activated the computer terminal there.

It is the player’s turn in both states. The outgoing edges
represent actions available to the player. In Figure 4a, the
player as Snake can shoot the Boss, move to the Platform, or
disable the trap set by the Boss. The first two actions break
authorial constraints. If the player shoots the Boss, the Boss
cannot be at the Platform at the end of the story. If the player
moves to the Platform, they cannot disable the trap set at the
Right Walkway. If the player disables the trap, Boss escapes
to the platform where all the authorial constraints can be ful-
filled. So, assuming the player acts randomly, the experience
manager has a 1 in 3 chance of producing a story that fulfills
authorial constraints from the state in Figure 4a.

In Figure 4b, Boss has moved to the Platform so the player
can no longer shoot the Boss. This takes away one of the
branches where the experience manager loses. It now has
a 1 in 2 chance of producing a story that fulfills authorial
constraints. If given a choice between these two states, an
experience manager should choose the state in Figure 4b be-
cause there is a higher chance that a story matching authorial
constraints will play out than the state in Figure 4a.

Choosing States
Experience managers can take advantage of state utility
to maximize the probability of telling a story where au-
thor constraints are satisfied. A process called event re-
vision (Robertson and Young 2014a) searches through al-
ternate histories consistent with player observations when
looking for stories that match authorial constraints. For ex-
ample, the two stories shown in Figure 5 are perceptually
equivalent from the player’s perspective. If an experience
manager decided to switch from one of these world histo-
ries to another, the player wouldn’t know the difference. One
downside of this approach is it waits until the player acts out
of alignment with the current story model to conduct search.
A better method would be to proactively choose between al-
ternate state models based on utility when a player learns
something new about the story world.

These alternate possible, perceptually equivalent histories
form a collection, or superposition, of states the player could
exist in. Figure 6 shows a collection of six superposed states
that correspond to six perceptually equivalent world histo-
ries. The set of world histories include the two shown in Fig-
ure 5. Whenever an NPC has the option of changing some-
thing in the world without the player observing, the superpo-
sition grows. Whenever the player observes something new
about the world, the superposition is split. Whenever a su-
perposition is split, the experience manager transitions the
player into one of the newly split states. Currently, this is
a passive transition based on the experience manager’s cur-
rent story. If the experience manager tracked these super-
posed states and evaluated their utility, it could transition
the player to the split state that maximizes the probability
that an interesting story will be told every time the player
learns something new about the world.

Platform

Left Walk Right Walk

Gear

Elevator

Platform

Left Walk Right Walk

Gear

Elevator

Platform

Left Walk Right Walk

Gear

Elevator

Platform

Left Walk Right Walk

Gear

Elevator

Left Walk Right Walk

Gear

Elevator

Platform

Left Walk Right Walk

Gear

Elevator

Platform

Figure 6: A set of six superposed states, each consistent with what the player knows about the world in the Spy domain after they perform
the actions: move from Elevator to Gear Room, place C4 on Gears, detonate C4. Two of these states are produced by the stories in Figure 5.

For example, if the player chooses to move to the Right
Walkway from any of the superposed states pictured in Fig-
ure 6, they will observe everything located at the Right
Walkway. This observation will split the superposition into
four parts, of which the player will exist in one. The experi-
ence manager could show the player that only a computer
terminal exists at the Right Walkway. If this is the case,
the player exists in a new superposition consisting of the
three states where only an unused computer terminal is at
the Right Walkway. Each of the other three states form their
own seperate possibility. The player could observe the Boss,
a used computer terminal, and a set trap at the Right Walk-
way. Or the player could observe a set trap and an unused
terminal at the Right Walkway. Or the player could observe
Boss holding a trap and phone linked to a computer terminal.

These four possibilities form a choice for the experience
manager immediately before the player makes a new obser-
vation. If the experience manager can choose the split state
with the highest utility, it can maximize the probability that
a goal state will be reached. There are two major hurdles
that must be overcome to make this happen. First, the set of
all possible worlds that are consistent with a player’s obser-
vations must be tracked and updated. Second, the utility of
these states must be calculated or estimated in order for the
system to make intelligent decisions.

Superposition Model
The rest of this paper focuses on modelling and updating the
set of superposed states consistent with player knowledge.
To make decisions based on the utility of superposed state,
the system must first be able to enumerate the set of states
consistent with player knowledge. One way to enumerate
the set of possible states is to model each state seperately
and update each state individually as play progresses. One
problem with this approach is that not only will the set of

states grow quickly as NPCs take unobserved actions, but
the time it takes to update the set grows faster. To update the
set, each possible action the current NPC could perform on
each state must be applied to create the successor superposi-
tion. To mitigate this cost, we present a method of modelling
all states in a single data structure that can be updated by ap-
plying all possible NPC actions once.

Modeling Superposed Formulae
Similar to a process called Initial State Revision (Riedl and
Young 2005), we model superposed states as a single data
structure where formula can be true, false, or undetermined.
A formula is true or false when it is known by the player. A
formula is undetermined when there exists a possible world
consistent with the player’s observations where the formula
is true and also one where it is false. For example, if it is
consistent with the player’s knowledge for the Boss to ei-
ther be at the Gear Room or the Right Walkway, the formula
that represents the Boss being located at the Gear Room, (at
boss gear), would be in the undetermined category. It would
be in this category because it is consistent with the player’s
observations for the formula to be either true or false.

Creating the Superposition
To create a state superposition, the experience manager must
first calculate all unobserved actions that could be performed
by the current NPC in the current state. If the effect of any of
these actions reversed a state formula, the formula is moved
from true or false to unknown in the successor superposition.
For example, one thing the Boss can do from the initial state
is move from the Gear Room to the Right Walkway. This ac-
tion would not be observed by the player and it reverses the
formula (at boss gear) from true to false and (at boss right)
from false to true. Both of these formulae would be moved
to the unknown category in the successor superposition.

(used terminal1 boss) (not (used terminal1 boss))
TRUE FALSE TRUE FALSE

(at boss gear) (has boss trap)
(has boss wire) (at boss left)
(has boss rifle) (at boss right)

(at boss left) (not (at boss left))
TRUE FALSE TRUE FALSE

(has boss wire) (at boss gear)
(has boss rifle) (has boss trap)

(at boss right)
(used terminal1 boss)

(has boss wire) (not (has boss wire))
TRUE FALSE TRUE FALSE

(has boss rifle) (has boss trap) (at boss gear) (at boss left)
(has boss trap) (at boss right)

(has boss rifle)
(used terminal1 boss)

(has boss trap) (not (has boss trap))
TRUE FALSE TRUE FALSE

(at boss gear) (has boss wire) (has boss wire)
(at boss left) (has boss rifle)
(at boss right)
(has boss rifle)

(used terminal1 boss)
(has boss rifle) (not (has boss rifle))

TRUE FALSE TRUE FALSE
(has boss wire) (has boss trap) (at boss gear) (has boss wire)

(has boss trap) (at boss left)
(at boss right)

(used terminal1 boss)
(at boss gear) (not (at boss gear))

TRUE FALSE TRUE FALSE
(at boss left) (has boss wire) (has boss trap)
(at boss right) (has boss rifle) (used terminal1 boss)

(at boss right) (not (at boss right))
TRUE FALSE TRUE FALSE

(has boss wire) (at boss gear)
(has boss rifle) (has boss trap)

(at boss left)
(used terminal1 boss)

Figure 7: Dependencies in the Spy world after one turn of the
Boss acting without being observed. Each formula in the super-
posed state is listed as true in the left column and false in the right
column. Underneath each formula is a list of what must be true and
what must be false if the superposed state is split in that direction.

Modeling Superposition Dependencies
In order to split a superposition, dependency information
must be tracked between unknown formulae. For example, if
the player were to move from the Elevator Room to the Gear
Room on their first move, the system would need to make a
decision about whether (at boss gear) was true or false. If the
system decided that the formula was true, it would need to
know that (at boss right) should become false, since the Boss
cannot be in two places at once. One way to model this infor-
mation is with dependencies similar to Graphplan’s (Blum
and Furst 1997) mutex links, but applied to true/true and
false/false relationships as well as true/false relationships.

Here is a method to calculate these dependencies: for each
unknown formula A, cycle through every other unknown for-
mula B. If in all states where A is true or unknown, B is true,
draw a true/true link from A to B. If B is false in all states

where A is true or unknown, draw a true/false link from A
to B. If in all states where A is false or unknown, B is true,
draw a false/true link from A to B. If B is false in all states
where A is false or unknown, draw a false/false link from A
to B. If none of these conditions apply, B is independent of
A and no links are drawn.

The output of applying this method to the set of actions
available to the Boss in the initial state is given in Figure 7.
Outgoing true and false links are underneath true formulae in
the left column and false formulae in the right column. For
example, if the system decides (has boss trap) is true, the
only way for this to happen is if the Boss used his first turn
to craft the trap from his rifle and trip wire. This means the
Boss couldn’t have moved from the gear room, so (at boss
gear) must be true and (at boss left) and (at boss right) must
be false. The Boss also could not have turned the computer
terminal at the gear room on, so (used terminal1 boss) must
be false. And since the only way to make a trap is to use a
rifle and wire, (has boss rifle) and (has boss wire) are false.

It is important to note that this model is correct only if the
domain allows characters to take no action during their turn.
Otherwise, it will not always model all dependencies.

Updating and Splitting
Once a superposition is created, it can be updated by apply-
ing new actions. When applying new actions, unknown for-
mulae can fulfill both true and false preconditions. For ex-
ample, when determining if (move boss platform right) can
be performed from the superposition pictured in Figure 7,
(at boss right) is in the superposed unknown category so it
fulfills the true precondition (at boss right).

When a superposition is split by a player observation, the
system must decide whether the observed formula becomes
true or false. When this happens, all linked dependencies
must also become true or false. For example, if the system
decides that (at boss gear) is true when the player moves
from the elevator room to the gear room, it must also make
(at boss left) and (at boss right) false.

Future Work
This model of superposed states consistent with player
knowledge is only half the information needed to make deci-
sions about what states to choose as the player learns about
the story world. The other half is utility information that
specifies what states are better than others. The system cur-
rently has to fully expand the branches underneath each pos-
sible state to find utility information. However, fully expand-
ing branches will not be computationally feasible in most
cases. The next step for this work will be to create an ef-
fective way to gather utility information without solving the
game tree under each state.

Conclusion
In this paper we view experience management as an adver-
sarial search problem and present a concise way to model
multiple states consistent with a player’s knowledge as they
play. This model can be applied to maximize the probability
author constraints are upheld as story events play out.

References
Blum, A. L., and Furst, M. L. 1997. Fast Planning Through
Planning Graph Analysis. Artificial Intelligence 90(1):281–
300.
Bruckman, A. 1990. The Combinatorics of Storytelling:
Mystery Train Interactive. Master’s thesis, The MIT Media
Laboratory.
Cardona-Rivera, R. E., and Young, R. M. 2015. Symbolic
Plan Recognition in Interactive Narrative Environments. In
The Eight Intelligent Narrative Technologies Workshop at
AIIDE.
Domınguez, I. X.; Cardona-Rivera, R. E.; Vance, J. K.; and
Roberts, D. L. 2016. The Mimesis Effect: The Effect
of Roles on Player Choice in Interactive Narrative Role-
Playing Games. In Proceedings of the 34th Annual CHI
Conference on Human Factors in Computing Systems.
Haslum, P. 2012. Narrative Planning: Compilations to Clas-
sical Planning. Journal of Artificial Intelligence Research
44.
Louchart, S., and Aylett, R. 2003. Solving the Narrative
Paradox in VEs – Lessons from RPGs. In Intelligent Virtual
Agents, 244–248.
Magerko, B. 2007. Evaluating Preemptive Story Direction
in the Interactive Drama Architecture. Journal of Game De-
velopment 2(3):25–52.
Mateas, M. 2001. An Oz-Centric Review of Interactive
Drama and Believable Agents. Artificial Intelligence Today
297–328.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL -
The Planning Domain Definition Language. Technical Re-
port CVC TR98003/DCSTR1165, Yale Center for Compu-
tational Vision and Control.
Packard, E. 1979. The Cave of Time. Choose Your Own
Adventure. Bantam Books.
Riedl, M., and Bulitko, V. 2013. Interactive Narrative: An
Intelligent Systems Approach. AI Magazine 34(1):67–77.
Riedl, M. O., and Young, R. M. 2005. Open-World Planning
for Story Generation. In International Joint Conference on
Artificial Intelligence.
Riedl, M. O., and Young, R. M. 2010. Narrative Planning:
Balancing Plot and Character. Journal of Artificial Intelli-
gence Research 39(1):217–268.
Riedl, M. O.; Stern, A.; Dini, D. M.; and Alderman, J. M.
2008. Dynamic Experience Management in Virtual Worlds
for Entertainment, Education, and Training. International
Transactions on Systems Science and Applications 4(2):23–
42.
Riedl, M.; Saretto, C. J.; and Young, R. M. 2003. Managing
Interaction Between Users and Agents in a Multi-Agent Sto-
rytelling Environment. In Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems,
741–748.
Riedl, M.; Thue, D.; and Bulitko, V. 2011. Game AI as
Storytelling. In Artificial Intelligence for Computer Games.
Springer. 125–150.

Roberts, D. L., and Isbell, C. L. 2008. A Survey and Quali-
tative Analysis of Recent Advances in Drama Management.
International Transactions on Systems Science and Appli-
cations, Special Issue on Agent Based Systems for Human
Learning 4(2):61–75.
Robertson, J., and Young, R. M. 2014a. Finding
Schrödinger’s Gun. In Artificial Intelligence and Interactive
Digital Entertainment, 153–159.
Robertson, J., and Young, R. M. 2014b. Gameplay as On-
Line Mediation Search. In The First Experimental AI in
Games at the Tenth Artificial Intelligence and Interactive
Digital Entertainment Conference.
Robertson, J., and Young, R. M. 2015. Automated Game-
play Generation from Declarative World Representations. In
Eleventh Artificial Intelligence and Interactive Digital En-
tertainment Conference.
Teutenberg, J., and Porteous, J. 2015. Incorporating Global
and Local Knowledge in Intentional Narrative Planning. In
Proceedings of the 2015 International Conference on Au-
tonomous Agents and Multiagent Systems, 1539–1546.
Ware, S. G., and Young, R. M. 2014. Glaive: A State-Space
Narrative Planner Supporting Intentionality and Conflict. In
Tenth Conference on Artificial Intelligence and Interactive
Digital Entertainment.
Weyhrauch, P. 1997. Guiding Interactive Drama. Ph.D. Dis-
sertation, Carnegie Mellon University Pittsburgh, PA. CMU-
CS-97-109.
Young, R. M.; Ware, S. G.; Cassell, B. A.; and Robertson,
J. 2013. Plans and Planning in Narrative Generation: A Re-
view of Plan-Based Approaches to the Generation of Story,
Discourse and Interactivity in Narratives. SDV. Sprache und
Datenverarbeitung.
Yu, H., and Riedl, M. O. 2013. Data-Driven Personalized
Drama Management. In Ninth Conference on Artificial In-
telligence for Interactive Digital Entertainment, 191–197.

